LAPORAN UJIAN PRAKTEK FISIKA ALAT PERAGA VENTURIMETER

LAPORAN UJIAN PRAKTEK FISIKA ALAT PERAGA VENTURIMETER
Oleh: Karomatul A


1.1  TUJUAN
1.1.1        Memenuhi tugas ujian praktek mata apelajaran Fisika jurusan IPA MAN Tlogo Blitar
1.1.2        Sebagai ajang untuk menciptakan alat peraga sederhana fisika
1.1.3        Mngaplikasikan Hukum Bernoulli dalam kegiatan sehari-hari

1.2  LANDASAN TEORITIS
1.2.1 Venturimeter
Alat ini dapat dipakai untuk mengukur laju aliran fluida, misalnya menghitung laju aliran air atau minyak yang mengalir melalui pipa. Venturimeter digunakan sebagai pengukur volume fluida misalkan minyak yang mengalir tiap detik.
Venturimeter adalah sebuah alat yang bernama pipa venturi. Pipa venturi merupakan sebuah pipa yang memiliki penampang bagian tengahnya lebih sempit dan diletakkan mendatar dengan dilengkapi dengan pipa pengendali untuk mengetahui permukaan air yang ada sehingga besarnya tekanan dapat diperhitungkan. Dalam pipa venturi ini luas penampang pipa bagian tepi memiliki penampang yang lebih luas daripada bagian tengahnya atau diameter pipa bagian tepi lebih besar daripada bagian tengahnya. Zat cair dialirkan melalui pipa yang penampangnya lebih besar lalu akan mengalir melalui pipa yang memiliki penampang yang lebi sempit, dengan demikian, maka akan terjadi perubahan kecepatan.

1.2.2 Hukum Bernoulli
      Prinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida yang menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan penurunan tekanan pada aliran tersebut. Prinsip ini sebenarnya merupakan penyederhanaan dari Persamaan Bernoulli yang menyatakan bahwa jumlah energi pada suatu titik di dalam suatu aliran tertutup sama besarnya dengan jumlah energi di titik lain pada jalur aliran yang sama. Prinsip ini diambil dari nama ilmuwan Belanda/Swiss yang bernama Daniel Bernoulli.
Dalam bentuknya yang sudah disederhanakan, secara umum terdapat dua bentuk persamaan Bernoulli; yang pertama berlaku untuk aliran tak-termampatkan (incompressible flow), dan yang lain adalah untuk fluida termampatkan (compressible flow).
Aliran Tak-termampatkan
Aliran tak-termampatkan adalah aliran fluida yang dicirikan dengan tidak berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida tak-termampatkan adalah: air, berbagai jenis minyak, emulsi, dll. Bentuk Persamaan Bernoulli untuk aliran tak-termampatkan adalah sebagai berikut:
 p + \rho g h + \frac{1}{2}\rho v^2 = konstan \,
di mana:
v = kecepatan fluida
h = ketinggian relatif terhadap suatu referensi
p = tekanan fluida
\rho = densitas fluida
Persamaan di atas berlaku untuk aliran tak-termampatkan dengan asumsi-asumsi sebagai berikut:
·         Aliran bersifat tunak (steady state)
·         Tidak terdapat gesekan (inviscid)
Dalam bentuk lain, Persamaan Bernoulli dapat dituliskan sebagai berikut:
 p_1 + \rho g h_1 + \frac{1}{2}\rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2}\rho v_2^2
Aliran Termampatkan
Aliran termampatkan adalah aliran fluida yang dicirikan dengan berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida termampatkan adalah: udara, gas alam, dll. Persamaan Bernoulli untuk aliran termampatkan adalah sebagai berikut:
 {v^2 \over 2}+ \phi + w =\mathrm{konstan}
di mana:
\phi \, = energi potensial gravitasi per satuan massa; jika gravitasi konstan maka \phi = gh \,
 w \, = entalpi fluida per satuan massa

Catatan:  w = \epsilon + \frac{p}{\rho} , di mana  \epsilon \, adalah energi termodinamika per satuan massa, juga disebut sebagai energi internal spesifik.

1.3  ALAT DAN BAHAN
1.         pipa paralon
2.         pipa L
3.         shock
4.         selang
5.         papan
6.         fluida( air pada pipa, minyak pada selang)

1.4  POSEDUR
1.       alirkan air melalui pipa L
2.      lihat perbedaan ketinggian minyak pada selang
3.      bagaimana tekanan pada pipa besar dan pipa kecil
4.      bagaimana kecepatan alir air pada pipa besar dan kecil menurut persamaan kontinuitas?
5.       buat kesimpulan

1.5  CARA KERJA
Fluida yang mengalir dalam pipa mempunyai massa jenis ρ. Kecepatan fluida mengalir pada pipa sebelah kanan, maka tekanan pada pipa sebelah kiri lebih besar. Perbedaan tekanan fluida di dua tempat tersebut diukur oleh manometer yang diisi dengan fluida dengan massa jenis ρ’ dan manometer menunjukkan bahwa perbedaan ketinggian permukaan fluida di kedua sisi adalah H.

Lubang yang menuju ke kaki kanan manometer, tegak lurus dengan aliran udara. Karenanya, laju aliran udara yang lewat di lubang ini (bagian tengah) berkurang dan udara berhenti ketika tiba di titik 2. Dalam hal ini, v2 = 0. Tekanan pada kaki kanan manometer sama dengan tekanan udara di titik 2 (P2). Ketinggian titik 1 dan titik 2 hampir sama (perbedaannya tidak terlalu besar) sehingga bisa diabaikan. Ingat ya, tabung pitot juga dirancang menggunakan prinsip efek venturi. Mirip seperti si venturi meter, bedanya si tabung petot ini dipakai untuk mengukur laju gas alias udara. Karenanya, kita tetap menggunakan persamaan efek venturi. 

Search This Blog

Powered by Blogger.

Labels

Popular Posts

Like Us